
Determinante de una matriz de 2x2
Explicación del concepto de determinante y ejemplos de al forma de encontrar el determinante de una matriz de 2x2, dentro del curso de Matrices. Curso completo de Matrices: https://www.youtube.com/playlist?list=PLeySRPnY35dEr2XewNdOjOl7Ft0tLIlKI _________________________________________________________________ Si quieres ayudarme para que el canal siga creciendo puedes: - Suscribirte: https://www.youtube.com/matematicasprofealex?sub_confirmation=1 - Contribuir al canal con una donación: paypal.me/profeAlex - Hacerte miembro del canal: https://www.youtube.com/matematicasprofealex/join _________________________________________________________________ Visita mi página web: www.matematicasprofealex.com Sígueme en mis redes sociales: - Facebook: https://www.facebook.com/matematicasprofealex - Instagram: https://www.instagram.com/matematicasprofealex Contacto Únicamente negocios, prensa: manager.profealex@gmail.com 0:00 Saludo 0:16 Conceptos que debes saber 1:45 Solución del ejemplo 2:59 Solución del ejemplo 2 3:33 Ejercicio de práctica
Determinante de una matriz de 2x2
What is a Determinant and How to Calculate It?
Introduction to Determinants
- The course begins with an introduction to determinants, emphasizing that a determinant is always a single number (constant or scalar) associated with a matrix.
- Determinants are only applicable to square matrices, which have the same number of rows and columns. For example, a 2x2 matrix has two rows and two columns.
Understanding Matrix Notation
- The notation for writing the determinant of a matrix A can be represented in parentheses or using vertical bars: |A|. This indicates that it refers to the determinant value rather than the matrix itself.
Calculating the Determinant of a 2x2 Matrix
- To find the determinant of a 2x2 matrix, multiply the elements of the main diagonal and subtract the product of the secondary diagonal.
- Example calculation: For matrix [[5, -3], [4, 6]], calculate as follows: (5 * 6) - (-3 * 4). This results in 30 + 12 = 42.
Practice Example
- Another example is provided for practice: calculating the determinant of matrix B by multiplying its diagonals. The result shows how straightforward this operation can be.
- In this case, for matrix B [[8, -4], [0, 2]], we compute (8 * 2) - (-4 * 0), resulting in a determinant of 16.
Final Remarks on Calculation Techniques
- The instructor encourages practicing finding determinants through exercises provided at the end of the lesson.
- Important reminder: Always remember that calculating determinants involves subtracting products from both diagonals correctly.
Additional Considerations
- When working with more complex matrices involving fractions or negative numbers, ensure proper multiplication rules are followed.